Teaching Plan of M.A/M.Sc in Statistics

Department of Statistics Assam University :: Silchar Session: 2024-25

FIRST SEMESTER			
Paper Code	Paper	Total Credits	Marks
STS 500	Orientation	0	
STS 501	Real Analysis & Linear Algebra (Core)	4	100
STS 502	Probability Theory (Core)	4	100
STS 503	Distribution Theory (Core)	4	100
STS 504	Survey Sampling (SEC)	3	100
STS 505	Statistical Computing in Excel and R (ALIF)	3	100
STS 506	Compulsory Community Engagement Course (CCEC)	2	100
	Total	20	600
	SECOND SEMESTER		
STS 551	Statistical Inference-I (Core)	4	100
STS 552	Linear Models and Regression (Core)	4	100
STS 553	Stochastic Processes (Core)	4	100
STS 554	Fundaments of Data Collection and Analysis (IDC-Open paper)	3	100
STS 555	R Programming (ALIF)	3	100
STS 556	Python Programming (VBC)	2	100
	Total	20	600
	THIRD SEMESTER		
STS 601	Statistical Inference-II (Core)	4	100
STS 602	Industrial Statistics and Optimization Techniques (IDC)	4	100
STS 603	(i) Applied Statistics-I (ECC)(ii) Biostatistics (ECC)	4	100
STS 604	Statistical Computing in SPSS (ALIF)	3	100
STS 605	Dissertation (Research Project-Part I)	5	100
	Total	20	500
	FOURTH SEMESTER		
STS 651	Design and Analysis of Experiments (Core)	4	100
STS 652	Multivariate Analysis (Core)	4	100
STS 653	(i) Applied Statistics-II (ECC)(ii) Reliability and Survival Analysis (ECC)	4	100
STS 654	Dissertation (Research Project-Part II)	8	200
		20	500

Paper Number: STS 501

REAL ANALYSIS & LINEAR ALGEBRA

(This course is taught by Dr. Vivek Verma and Dr. Tanusree Deb Roy)

Course Co-ordinator: TANUSREE DEB ROY

WEEK	TOPICS TO BE COVERED	UNIT	COMMENT
	Fundament concepts of Sequence and its types.	Ι	Dr. Vivek Verma
First	Properties and conceptualization of Convergent sequences, bounded sequences	Ι	Dr. Vivek Verma
FIISt	Brief Introduction of course	III	Dr. Tanusree Deb Roy
	Concept of Integrals	III	Dr. Tanusree Deb Roy
	Concept of Double Integral	III	Dr. Tanusree Deb Roy
	Conceptualization of Subsequence, Divergent sequence	Ι	Dr.Vivek Verma
	Properties of Monotone sequence, Cauchy sequence	Ι	Dr. Vivek Verma
Second	Concept of Multiple Integrals	III	Dr. Tanusree Deb Roy
	Problems on double integral	III	Dr. Tanusree Deb Roy
	Problems on multiple integrals	III	Dr. Tanusree Deb Roy
Third	Cauchy's general principle of	Ι	Dr. VivekVerma
	convergence	Ι	Dr. VivekVerma
	Multiple integrals by repeated integration	III	Dr.Tanusree Deb Roy
	Multiple integrals by repeated integrationcont	III	Dr.Tanusree Deb Roy

	Change of variables in multiple integral	III	Dr. Tanusree Deb Roy
	Infinite series and its properties	Ι	Dr. VivekVerma
		Ι	Dr.VivekVerma
Fourth	Concept of Improper Integral	III	Dr.Tanusree Deb Roy
	Improper Integralcont	III	Dr.Tanusree Deb Roy
	Differentiation under the sign of integral	III	Dr.Tanusree Deb Roy
	Different tests of convergence of	Ι	Dr.VivekVerma
	series	Ι	Dr.VivekVerma
Fifth	Concept of matrix	IV	Dr.Tanusree Deb Roy
	Linear Transformations	IV	Dr.Tanusree Deb Roy
	Rank of a matrix	IV	Dr.Tanusree Deb Roy
	Different tests of convergence of series	Ι	Dr.VivekVerma
		Ι	Dr.VivekVerma
Sixth	Nullity of a linear transformation	IV	Dr.Tanusree Deb Roy
	Rank-nullity theorem	IV	Dr.Tanusree Deb Roy
	Matrix representation of linear transformations	IV	Dr.Tanusree Deb Roy
	Different tests of convergence of	Ι	Dr.VivekVerma
	501105	Ι	Dr.VivekVerma
Seventh	Inner product spaces	IV	Dr.Tanusree Deb Roy
	Norm of a matrix	IV	Dr.Tanusree Deb Roy

	Orthogonality of a matrix	IV	Dr.Tanusree Deb Roy
	Continuous functions and their properties uniform continuity	II	Dr.VivekVerma
	proportios, uniform continuity	II	Dr. Vivek Verma
Eighth	Orthogonal projection of a matrix	IV	Dr.Tanusree Deb Roy
	Gram-Schmidt orthogonalization process	IV	Dr.Tanusree Deb Roy
	Eigenvalues of a matrix	V	Dr.Tanusree Deb Roy
	Continuous functions and their	II	Dr.VivekVerma
	properties, uniform continuity	II	Dr.VivekVerma
Ninth	Eigenvectors of a matrix	V	Dr.Tanusree Deb Roy
	Diagonalizable matrices	V	Dr.Tanusree Deb Roy
	Triangular matrices	V	Dr.Tanusree Deb Roy
	Mean value theorems, Taylor's theorem and their applications	Π	Dr.VivekVerma
		II	Dr.VivekVerma
Tenth	Matrix polynomials	V	Dr.Tanusree Deb Roy
	Cayley-Hamilton theorem	V	Dr.Tanusree Deb Roy
	Generalized inverse of a matrix	V	Dr.Tanusree Deb Roy
	Functions of several variables: continuity and differentiability	II	Dr. Vivek Verma
		II	Dr. Vivek Verma
Eleventh	Problems based on Generalized inverse of a matrix	V	Dr.Tanusree Deb Roy
	Moore and Penrose inverse	V	Dr.Tanusree Deb Roy
	Problems on Moore and Penrose inverse	V	Dr.Tanusree Deb Roy
Twelfth	Maxima-minima of functions of	Π	Dr. Vivek Verma
i wellul		II	Dr.VivekVerma

	Quadratic forms	V	Dr.Tanusree Deb Roy
	Quadratic forms problems	V	Dr.Tanusree Deb Roy
	Problems based on triangular matrices	V	Dr.Tanusree Deb Roy
	Maxima-minima of functions of	II	Dr.VivekVerma
	several variables	II	Dr.VivekVerma
Thirteenth	Discussion on any topic of Unit III	III	Dr.Tanusree Deb Roy
	Discussion on any topic of Unit IV	IV	Dr.Tanusree Deb Roy
	Discussion on any topic of Unit V	V	Dr.Tanusree Deb Roy
	Constrained maxima-minima of functions and their applications	II	Dr.VivekVerma
		II	Dr.VivekVerma
Fourteenth	Revisions of theory and problems	III	Dr.Tanusree Deb Roy
	Revisions of theory and problems	IV	Dr.Tanusree Deb Roy
	Revisions of theory and problems	V	Dr.Tanusree Deb Roy
	Constrained maxima-minima of	Π	Dr.VivekVerma
	runctions and their applications	Π	Dr.VivekVerma
Fifteenth	Revision		Dr.Tanusree Deb Roy
	Revision		Dr.Tanusree Deb Roy
	Revision		Dr.Tanusree Deb Roy

Paper Number: STS 502 (CORE PAPER)

PROBABILITY THEORY

(This course is taught by Dr. Rama Shanker and Dr. Jonali Gogoi)

Course Coordinator : JONALI GOGOI

WEEK	TOPICS TO BE COVERED	UNIT	TEACHERS
	Classes of Sets	T	Dr. Jonali Coggi
	Classes of Sets	I	Dr. Jonali Gogoi
	Theids, Borel field	I	Di. Johan Gogor
First	Generating functions and its	IV	Dr. Rama Shanker
	Importance in Statistics	IV	Dr. Pama Shankar
	(pgf) and its properties	1 V	DI. Kalla Shankei
	Problems on sets, field, Borel	Ι	Dr. Jonali Gogoi
	field		
	Sigma-fields	Ι	Dr. Jonali Gogoi
Second	Problems on pgf	IV	Dr. Rama Shanker
	Moment generating function	IV	Dr. Rama Shanker
	(mgf) and its properties		
	Minimal sigma-field	I	Dr. Jonali Gogoi
	Problems on sigma-fields and	I	Dr. Ionali Gogoi
	minimal sigma-fields	•	Di vonun Gogor
Third			
	Problems, limitations and	IV	Dr. Rama Shanker
	applications of mgf		
	Factorial moment generating	IV	Dr. Rama Shanker
	Sequence of sets	I	Dr. Jonali Gogoi
		-	Dirvonun Cogor
	Limits of a sequence of sets	Ι	Dr. Jonali Gogoi
Fourth	Drohloms on front	IV.	Dr. Domo Chonkor
	Characteristic function and its		Dr. Rama Shanker
	properties	1 •	D1. Rama Shankei
	Probability measure,	Ι	Dr. Jonali Gogoi
	Integration with respect to	I	Dr. Jonali Gogoj
	measure	1	Di. Johan Gogor
Fifth	Problems on characteristic	IV	Dr. Rama Shanker
	function		
	Theorems on characteristic	IV	Dr. Rama Shanker
	Probability space Basic	П	Dr. Ionali Gogoi
	terminologies of Probability	ш	Di. Johan Gogor
Sixth	Theorems on probability	II	Dr. Jonali Gogoi
	Problems on inversion theorem	IV	Dr. Rama Shanker
	of characteristic function		
	Joint characteristic functions		Dr. Rama Shanker
	Problems	11	Dr. Jonali Gogoi
	Theorem of total probability	II	Dr. Jonali Gogoi
Seventh	Law of large numbers and its	V	Dr. Rama Shanker
	importance		
	Weak law of large numbers	V	Dr. Rama Shanker
	(WLLN)	Π	Dr. Ionali Gogoi
	probability	11	
Eighth	Problems	II	Dr. Jonali Gogoi
	Problems on WLLN	V	Dr. Rama Shanker
	Khinchin's WLLN	V	Dr. Rama Shanker
Ninth	Independence of events	II	Dr. Jonali Gogoi
	Conditional probability	II	Dr. Jonali Gogoi

	Problems on Khinchin's WLLN	V	Dr. Rama Sh	
	Kolmogorov's Theorem	V	Dr. Rama Sh	Note: The
	Problems on Independence of	II	Dr. Jonali Go	plan is
	events and Conditional			tentative but
	probability			any change in
Tonth	Bayes' Theorem and its	II	Dr. Jonali Go	the plan shall
Tenui	applications			be recorded
	Strong Law of large Numbers	V	Dr. Rama Sh	in the
	(SLLN)			comment
	Problems on SLLN	V	Dr. Rama Sh	column
	Bayes' Theorem and its	II	Dr. Jonali Gc	corumn.
	applications			
F1 1	Bayes' Theorem and its	11	Dr. Jonali Gc	
Eleventh	applications	X 7		(IONALI
	Central Limit Theorem (CLT)	V	Dr. Rama Sh	(JUNALI
	and its importance	V	Dr. Domo Sh	GOGOI)
	De Moivre s Laplace CL1	V	Dr. Rama Sn	
	Random Variable and its	111	Dr. Jonali Go	
	Mothematical expectation and	ш	Dr. Ionali Ca	
	inequalities involving random	111	Dr. Jonan Ge	
	variables viz Markov's			
Twelfth	Holder's Minkowski's and			Course
	Jenson's Inequalities			Coordinator
	venson o mequandes			00010110001
	Liapounove's CLT	V	Dr. Rama Sh	
	Lindberge Levy CLT	V	Dr. Rama Sh	
	Probability distribution (discrete	III	Dr. Jonali Gc	
	and continuous),			
Thirteenth	Distribution function	III	Dr. Jonali Go	
	Revision	IV	Dr. Rama Sh	
	Revision	IV	Dr. Rama Sh	
	Bi-dimensional random	III	Dr. Jonali Go	
	variables			
Fourteenth	Multi-dimensional random	III	Dr. Jonali Go	
Tourteentii	variables			
	Devision	П/	Dr. Domo Sh	
	Revision		Dr. Rama Sh	
	Revision	V	Dr. Kama Sh	
	Marginal and conditional	111	Dr. Jonali Gc	
	Custributions	ш	Dr. Ionali C.	
Fifteenth	Bayision		Dr. Jonali GC	
	Revision	V	Dr. Kaina Sh	
	Kev1s10n	V	Dr. Rama Sh	

Paper Number: STS 503 (CORE –PAPER)

DISTRIBUTION THEORY

(Course is taught by Dr. Tanusree Deb Roy and Dr. Rama Shanker)

Course Co-ordinator: TANUSREE DEB ROY

WEEK	TOPICS TO BE COVERED	UNIT	TEACHERS
	Brief Introduction of course	Ι	Dr. Tanusree Deb Roy
First	Introduction on Discrete Distribution	Ι	Dr. Tanusree Deb Roy
	Bivariate Normal distribution (BND)	III	Dr. Rama Shanker
	Properties of BND	III	Dr. Rama Shanker
	Bernoulii distribution with	Ι	Dr. Tanusree Deb Roy
	properties	_	
	Concept of Binomial distribution	<u> </u>	Dr. Tanusree Deb Roy
	Properties of Binomial distribution with derivation	Ι	Dr. Tanusree Deb Roy
Second	Problems of BND	III	Dr. Rama Shanker
	Applications of BND		Dr. Rama Shanker
	Concept of Poisson distribution	l	Dr. Tanusree Deb Roy
	with derivation	l	Dr. Tanusree Deb Roy
	Problems based on Binomial distribution and Poisson distribution	Ι	Dr. Tanusree Deb Roy
Third	Chi-square distribution	III	Dr. Rama Shanker
	Properties and Theorems on chi- square distribution	III	Dr. Rama Shanker
	Concept of Negative binomial distribution	Ι	Dr. Tanusree Deb Roy
	Properties of Negative binomial distribution with derivation	Ι	Dr. Tanusree Deb Roy
	Concept of Geometric distribution	Ι	Dr. Tanusree Deb Roy
Fourth	Applications of Ch0square distribution	III	Dr. Rama Shanker
	t-distribution	III	Dr. Rama Shanker
	Properties of Geometric distribution with derivation	Ι	Dr. Tanusree Deb Roy
	Concept of Hyper geometric distribution	Ι	Dr. Tanusree Deb Roy
	Properties of Hyper geometric distribution with derivation	Ι	Dr. Tanusree Deb Roy
Fifth	Properties and theorems on t- distribution	III	Dr. Rama Shanker
	Problems on t-distribution	III	Dr. Rama Shanker
	Concept of Power Series distribution	Ι	Dr. Tanusree Deb Roy
	Concept of Pitman family of distribution	Ι	Dr. Tanusree Deb Roy
	Concept of Continuous distribution	П	Dr. Tanusree Deb Roy
Sixth	Applications of t-distribution		Dr. Rama Shanker
	F-distribution	III	Dr. Rama Shanker
	Properties of Normal distribution with derivation	II	Dr. Tanusree Deb Roy
	Properties of Exponential distribution with derivation	II	Dr. Tanusree Deb Roy
	Problems based on Normal and Exponential distribution	II	Dr. Tanusree Deb Roy
Seventh	Properties and theorems on F-	III	Dr. Rama Shanker
	Applications of F-distribution	Ш	Dr. Rama Shanker
	Gamma distribution its properties	П	Dr. Tanusree Deb Rov
	with their derivation		
Eighth	Beta type I distribution its properties with their derivation	II	Dr. Tanusree Deb Roy
Lightin	Beta type II distribution its properties with their derivation	II	Dr. Tanusree Deb Roy

	Relationship between chi-square, t	III	Dr. Rama Shanker
	and F distributions		
	Non-central chi-square distribution	IV	Dr. Rama Shanker
	Problems based on Gamma and beta	II	Dr. Tanusree Deb Roy
	distribution		
	Weibull distribution its properties with their derivation	II	Dr. Tanusree Deb Roy
	Cauchy distribution its properties with their derivation	II	Dr. Tanusree Deb Roy
Ninth	Properties and Applications of Non-	IV	Dr. Rama Shanker
_	central chi-square distribution	11.7	Dr. Dawas Charden
-	Non-central t distribution		Dr. Rama Shanker
	Log normal distribution	11	Dr. Tanusree Deb Roy
	Introduction on order statistics with application	V	Dr. Tanusree Deb Roy
	Distribution of r-th order and joint	V	Dr. Tanusree Deb Roy
	order statistics		
Tenth	Properties and Applications of non-	IV	Dr. Rama Shanker
	central t-distribution		
	Non-central F-distribution	IV	Dr. Rama Shanker
	Distribution of range and moments	V	Dr. Tanusree Deb Roy
	of order statistics		
	Moments of order statistics	V	Dr. Tanusree Deb Roy
	Problems based on order statistics	V	Dr. Tanusree Deb Roy
Eleventh	Properties and Applications of non-	IV	Dr. Rama Shanker
_	central F-distribution		
	Compound distribution		Dr. Rama Shanker
	Concept of mixture distribution	V	Dr. Tanusree Deb Roy
	Problems based on mixture distribution	V	Dr. Tanusree Deb Roy
	Introduction on Extreme value	V	Dr. Tanusree Deb Roy
T 161	distribution	117	Dr. Domo Chordson
Iwelith	Properties and Applications of		Dr. Rama Shanker
	Neyman's Type A distribution	IV	Dr. Kama Snanker
	Discussion of different types of Extreme value distribution	V	Dr. Tanusree Deb Roy
	Application of Extreme value distribution	V	Dr. Tanusree Deb Roy
	Problems based on Cauchy distribution	II	Dr. Tanusree Deb Roy
Thirteenth	Polya-eggenberger distribution	IV	Dr. Rama Shanker
	Inverse Polya-eggenberger	IV	Dr. Rama Shanker
	distribution		
	Problems based on log normal	II	Dr. Tanusree Deb Roy
	Revisions of theory	Т	Dr. Tanusree Deb Roy
-	Revisions of theory	<u> </u>	Dr. Tanusree Deb Roy
Fourteenth	Truncated discrete distribution	IV	Dr. Rama Shanker
	Truncated continuous distribution	IV	Dr. Rama Shanker
-	Revisions of theory	V	Dr. Tanusree Deb Roy
++	Revisions of Problems	 I	Dr. Tanusree Deb Roy
	Revisions of Problems	<u> </u>	Dr. Tanusree Deb Roy
Fifteenth	Revisions of Unit III	 	Dr. Rama Shanker
	Revisions of Unit IV	IV	Dr. Rama Shanker

(TANUSREE DEB ROY)

Paper Number: STS 504 (SEC –PAPER)

SURVEY SAMPLING

(Course is taught by Dr. Rama Shanker, Dr. Jonali Gogoi and Dr. Vivek Verma)

Course Co-ordinator: TANUSREE DEB ROY

WEEK	TOPICS TO BE COVERED	UNIT	TEACHERS
	Basic ideas and distinctive features of sampling techniques	Ι	Dr. Jonali Gogoi
First	Basic ideas and distinctive features of sampling techniques	Ι	Dr. Jonali Gogoi
	Errors in survey	V	Dr. Vivek Verma
	Introduction to Double sampling Technique (DST)	IV	Dr. Rama Shanker
	Simple Random Sampling (SRS)	Ι	Dr. Jonali Gogoi
	Review of important results in simple random sampling	Ι	Dr. Jonali Gogoi
Second	Errors in survey	V	Dr. Vivek Verma
	DST with unequal probability of selection	IV	Dr. Rama Shanker
	Problems on SRS	Ι	Dr. Jonali Gogoi
TT1 ' 1	Stratified random sampling	Ι	Dr. Jonali Gogoi
Third	Errors in survey with application	V	Dr. Vivek Verma
	Advantages, disadvantages and Applications of DST	IV	Dr. Rama Shanker
	Problems on Stratified random samplng	Ι	Dr. Jonali Gogoi
Fourth	Estimation with different type of allocation of strata	Ι	Dr. Jonali Gogoi
1.00101	Non sampling errors	V	Dr.Vivek Verma
	Cluster sampling with equal cluster size	IV	Dr. Rama Shanker
	Proportional allocation and optimum allocation	Ι	Dr. Jonali Gogoi
T (0)	Sampling with varying probabilities (uunequal probability sampling)	Π	Dr. Jonali Gogoi
Fifth	Non sampling errors with application	V	Dr. Vivek Verma
	Cluster sampling with unequal cluster sizes	IV	Dr. Rama Shanker
	Sampling with varying probabilities (uunequal probability sampling)	Π	Dr. Jonali Gogoi
Sixth	Sampling with varying probabilities (uunequal probability sampling)	Π	Dr. Jonali Gogoi
	Randomized response technique	V	Dr. Vivek Verma
	Advantages, disadvantages and applications of Cluster sampling	IV	Dr. Rama Shanker
	Sampling with varying probabilities (uunequal probability sampling)	II	Dr. Jonali Gogoi
Seventh	PPS with replacement/without replacement methods [including Lahiri's scheme]	Π	Dr. Jonali Gogoi
	Randomized response technique	V	Dr. Vivek Verma
	Two-stage sampling with varying sizes of first stage units	IV	Dr. Rama Shanker

	PPS with replacement/without replacement methods [including Lahiri's scheme]	Π	Dr. Jonali Gogoi
Eighth	Horwitz and Des Raj estimators for a general sample size 2	Π	Dr. Jonali Gogoi
	Randomized response technique	V	Dr. Vivek Verma

	Advantages, disadvantages and	IV	Dr. Rama Shanker
	applications of Two-stage sampling		
	Horwitz and Des Raj estimators for	II	Dr. Jonali Gogoi
	a general sample size 2		_
Ninth	Murthy's estimator for sample size	II	Dr. Jonali Gogoi
	2		
	Randomized response technique	V	Dr. Vivek Verma
	Multi-stage sampling	IV	Dr. Rama Shanker
	Ratio method of estimation	III	Dr. Jonali Gogoi
	Merits and demerits of ratio method	III	Dr. Jonali Gogoi
T	of estimation		
Tenth	Randomized response technique	V	Dr. Vivek Verma
	Advantages, disadvantages and	IV	Dr. Rama Shanker
	applications of Multi-stage sampling		
	Problems	III	Dr. Jonali Gogoi
	Ratio method of estimation (Hartley	III	Dr. Jonali Gogoi
Eleventh	Ross and Jacknife estimators)		
	Basics of Non-randomized	V	Dr. Vivek Verma
	sampling		
	Systematic sampling	IV	Dr. Rama Shanker
	Ratio method of estimation (Hartley	III	Dr. Jonali Gogoi
	Ross and Jacknife estimators)		
Twelfth	Ratio method of estimation (Hartley	III	Dr. Jonali Gogoi
1	Ross and Jacknife estimators)		D D
	Basics of distance sampling	<u>V</u>	Dr. Vivek verma
	Theorems on systematic sampling		Dr. Rama Shanker
	Regression method of estimation	III	Dr. Jonali Gogoi
Thirteenth	Regression method of estimation	111	Dr. Jonali Gogoi
	Including its optimum property	V	Dr. Wissels scores
	Theorems on systematic compling		Dr. Vivek verilia
	Ducklama	<u> </u>	Dr. Langli Cagai
	Problems	111	Dr. Jonan Gogoi
	Concepts and combined notic		Dr. Iarali Cazai
Fourteenth	separate and combined ratio	111	Dr. Jonan Gogoi
	Network sampling	V	Dr. Vivek verma
	Adventages disadventages and		Dr. Pama Shankar
	applications of Systematic sampling	1 V	DI. Kailla Shalikei
	Separate and combined ratio	Ш	Dr. Jonali Gogoj
	estimator	111	
Fiftponth	Problems	Ш	Dr. Jonali Gogoj
	Network sampling	 V	Dr. Vivek verma
	Revisions	ĪV	Dr. Rama Shanker
1		T 1	

(JONALI GOGOI)

Paper Number: STS 505 (ALIF - Paper)

STATISTICAL COMPUTING IN EXCEL

AND R

(This course is taught entirely by Dibyojyoti

Bhattacharjee) Course Co-ordinator: Dibyojyoti

Bhattacharjee

WEEK	TOPICS TO BE COVERED	UNIT	TEACHER
	Getting Started in Microsoft Excel	Ι	
Finat	Use of formula in Excel	Ι	1
THSt	Use of Mathematical Functions	Ι	All the classes
	Statistical Functions in Excel	Ι	by Dibyojyoti
Second	Graphics in Excel	Ι	Bhattacharjee
Third	Working with Grouped Frequency Distribution Bar Chart, Pie Chart, Frequency Polygon, Histogram, error bar plot, Ogive	Ι	
	Line diagram, Scatter diagram, Radar Plot, Doughnut plot, Bubble Plot	Ι	
	Use of Data Analysis Toolpak	II]
Forth	Random number generation from different distributions	Π	
	Regression (simple, linear and non-linear)	II	
	t-tests, Z-tests	II	
Fifth	Multiple Regression	II	
	One-way and Two-way ANOVA in Excel	II	
Sixth	Optimization Using Solver	II	
	Matrix Algebra	П	
Seventh	Solution of equations using matrix method	II	
Eighth	Eigen Values and Eigen Vectors in Excel	IV	
	Introduction to R Programming	IV	
Ninth	Importing and Exporting Data in R	IV	
Tenth	Matrix Algebra in R	IV	
Fleventh	Descriptive statistics Computation involving single variable in R	V	
Eleventin	Descriptive statistics involving two variables in R	V	
Twelfth	Statistical Graphics in R: Basic Graphs-Bar, Pie, line, histograms	V	
Thirteenth	Box-plot, Scatter plot, Filtered Scatter Plot, Q-Q Plot	V	
Fourteenth	Common parametric tests in R	V	
Fifteenth	ANOVA – one way and two way (with single and multiple-observations per cell)	V	

Note: The plan is tentative but any change in the plan shall be recorded in the comment column

(Dibyojyoti Bhattacharjee) Course Coordinator

Paper Number: STS 551

STATISTICAL INFERENCE-I (This course is taught by Dr. Rama Shanker) Course Co-ordinator: Dr. RAMA SHANKER

WEEK	TOPICS TO BE COVERED	UNIT	NAME OF TEACHER
	Brief Introduction of the course	Ι	Dr. Rama Shanker
	Estimation concept and examples	I	Dr. Rama Shanker
First	Unbiasedness and its results	Ι	Dr. Rama Shanker
	Examples on Unbiasedness	Ι	Dr. Rama Shanker
	Examples on consistency	Ι	Dr. Rama Shanker
Second	Efficiency and some results	Ι	Dr. Rama Shanker
	Examples on Efficiency	Ι	Dr. Rama Shanker
	Concepts of sufficiency with examples	Ι	Dr. Rama Shanker
	Examples on sufficiency	Ι	Dr. Rama Shanker
	Minimal sufficiency	Ι	Dr. Rama Shanker
Third	Some examples on minimal sufficient statistics	1	Dr. Rama Shanker
	Neyman factorization criterion		Dr. Rama Shanker
	Completeness	I	Dr. Rama Shanker
	distributions	1	Dr. Kama Snanker
Forth	Rao-Cramer's inequality	Π	Dr. Rama Shanker
	Examples on Rao-cramer's inequality	Π	Dr. Rama Shanker
	Chapman's Robin's inequality	II	Dr. Rama Shanker
Fifth	Bhattacharya's bound and mean square error	II	Dr, Rama Shanker
	Best linear unbiased estimator	II	Dr. Rama Shanker
	Rao-Blackwell theorem	II	Dr. Rama Shanker
	Problems on Rao-Blackwell theorem	II	Dr. Rama Shanker
	Lehmann-Scheffe's theorem		Dr. Rama Shanker
Sixth	Problems on Lehmann-Scheffe's theorem	11	Dr. Rama Shanker
	Maximum likelihood estimation (MLE)	III	Dr. Rama Shanker
	Properties of MLE	Ш	Dr. Rama Shanker
	Problems on MLE	III	Dr. Rama Shanker
Seventh	Method of moments and examples	III	Dr. Rama Shanker
	MLE in censored and truncated distributions	Π	Dr. Rama Shanker
Fighth	Method of minimum chi-square and modified minimum chi- square	III	Dr. Rama Shanker
Lightin	Pitman estimation for location	Ш	Dr. Rama Shanker
	Pitman estimation for scale	III	Dr. Rama Shanker
	Hypothesis testing concepts		Dr. Rama Shanker
	Basic terminology of hypothesis testing	III	Dr. Rama Shanker
Ninth	Neyman Pearson lemma	IV	Dr. Rama Shanker
11111111	Examples on Neyman Pearson lemma	IV	Dr. Rama Shanker
	UMP tests with examples	IV	Dr. Rama Shanker
	Numerical examples on MP and UMP tests	IV	Dr. Rama Shanker

	Numerical examples on MP and UMP tests	IV	Dr. Rama Shanker
	Numerical examples on MP and	IV	Dr. Rama Shanker
Tenth	UMP tests		
	Miscellaneous examples on	IV	Dr. Rama Shanker
	hypothesis testing		
	Miscellaneous examples on	IV	Dr. Rama Shanker
	Hypothesis testing		
Flavanth	Concept of Interval estimation	V	Dr. Rama Shanker
Lievenui	Examples of Interval estimation	V	Dr. Rama Shanker
	Pivotal quantity method of	V	Dr. Rama Shanker
	confidence interval		
	Examples on pivotal quantity	V	Dr. Rama Shanker
	method of constructing		
	confidence interval		
	General method of constructing	V	Dr. Rama Shanker
Twelfth	confidence interval		
	Large sample confidence	V	Dr. Rama Shanker
	Intervals		
	Examples on Large sample	V	Dr. Rama Shanker
	confidence Intervals		
			- 1
WEEK	TOPICS TO BE COVERED	UNIT	NAME OF TEACHER
		NUMBER	
	Shorted confidence interval	V	Dr. Rama Shanker

		NUMBER	
	Shorted confidence interval	V	Dr. Rama Shanker
	Construction of Shorted	V	Dr. Rama Shanker
	confidence interval		
Thirteenth	Examples on construction of	V	Dr. Rama Shanker
	shorted confidence interval		
	Examples on construction of	V	Dr. Rama Shanker
	shorted confidence interval		
	Revision of Unit I	Ι	Dr. Rama Shanker
Fourtoonth	Revision of Unit I	Ι	Dr. Rama Shanker
Fourteentin	Revision of Unit II	Π	Dr. Rama Shanker
	Revision of Unit II	Π	Dr. Rama Shanker
Fifteenth	Revision of Unit III	III	Dr. Rama Shanker
	Revision of Unit III	III	Dr. Rama Shanker
	Revision of Unit IV	IV	Dr. Rama Shanker
	Revision of Unit IV	IV	Dr. Rama Shanker

(RAMA SHANKER)

Paper Number: STS- 552 Linear Models and Regression Course Co-ordinator- Dr. Jonali Gogoi

WEEK	TOPICS TO BE COVERED	UNIT	TEACHER
		NUMBER	
	Linear Model	l	Dr. Jonali Gogoi
First	Gauss-Markov Model	<u> </u>	Dr. Jonali Gogoi
	Estimation of Linear Parametric functions and BLUE's		Dr. Jonali Gogoi
	Fit of polynomial regression in one variable		Dr. Vivek Verma
	Basic concept of generalized linear models	<u> </u>	Dr. Vivek Verma
	Properties of BLUEs		Dr. Jonali Gogoi
	Regression lines and their properties	I	Dr. Jonali Gogoi
C 1	Estimation and tests of hypothesis associated with the	1	Dr. Jonali Gogoi
Second	parameters Fit of polynomial regression in one veriable	IV/	Dr. Vivak Varma
	Basic concept of generalized linear models		Dr. Vivek Verma
	Least Square Regression	• T	Dr. Jonali Gogoj
	Properties of least square regression	I	Dr. Jonali Gogoi
Third	Confidence Intervals	I	Dr. Jonali Gogoi
TIIIQ	Fit of polynomial regression in several variables	IV	Dr. Vivek Verma
	Basic concept of generalized linear models	V	Dr. Vivek Verma
	Confidence Intervals and bands for Slope	I	Dr. Jonali Gogoi
	Confidence Intervals and bands for Intercept	I	Dr. Jonali Gogoi
Forth	Goodness of fit	I	Dr. Jonali Gogoi
1 ortin	Fit of polynomial regression in several variables	IV	Dr. Vivek Verma
	Logit transformation	V	Dr. Vivek Verma
	Residual Analysis	Ι	Dr. Jonali Gogoi
	Outliers, effects of outliers	Ι	Dr. Jonali Gogoi
Fifth	Transformation of variables	Ι	Dr. Jonali Gogoi
	Fit of polynomial regression in several variables	IV	Dr. Vivek Verma
	Logit transformation	V	Dr. Vivek Verma
	Interclass Correlation	Ι	Dr. Jonali Gogoi
	Correlation Ratio	Ι	Dr. Jonali Gogoi
Sixth	Multiple Regression	II	Dr. Jonali Gogoi
	Use of orthogonal polynomials	IV	Dr. Vivek Verma
	Maximum likelihood estimation in GLM	V	Dr. Vivek Verma
	Estimation and tests of hypothesis associated with	II	Dr. Jonali Gogoi
	parameters of multiple regression		
Seventh	Least Square Estimator	II	Dr. Jonali Gogoi
Seventin	Properties of Least Square Estimator	II	Dr. Jonali Gogoi
	Use of orthogonal polynomials	IV	Dr. Vivek Verma
	Maximum likelihood estimation in GLM	<u>V</u>	Dr. Vivek Verma
	Confidence Intervals		Dr. Jonali Gogoi
	Confidence intervals for mean		Dr. Jonali Gogoi
Eighth	Regression Coefficients		Dr. Jonali Gogoi
	Gompertz non-linear growth models		Dr. Vivek Verma
	Maximum likelihood estimation in GLM	<u> </u>	Dr. Vivek Verma
	Collinearity	<u> </u>	Dr. Jonali Gogoi
	A polygis of regression residuals	<u> </u>	Dr. Jonali Gogoi
	Comperty non-linear growth models		Dr. Vivek Verma
	Maximum likelihood estimation in GLM	V	Dr. Vivek Verma
Ninth	Check for normality of the error terms in multiple regression	<u>т</u>	Dr. Jonali Gogoi
	Inverse regression	<u> </u>	Dr. Jonali Gogoi
	Two-phase linear regression	<u> </u>	Dr. Jonali Gogoi
	Gompertz non-linear growth models		Dr. Vivek Verma
	Tests of hypothesis: Wald test	V	Dr. Vivek Verma
	Two-phase linear regression inclusion of qualitative variable	П	Dr. Jonali Gogoi
	as regressors	TT	
Element	Multiple Correlation	<u> </u>	Dr. Jonali Gogoi
Lieventh	Parual Regression		Dr. Jonali Gogoi
	Tosts of hypothesis: LD tost & soors tost	1 V 	Dr. Vivel Verma
	Tests of hypothesis. LK test& score test	v	DI. VIVEK VEIIIIA
T	Auto-Correlation	III	Dr. Jonali Gogoi
i welluli	Detection and Removal of Auto-Correlation	III	Dr. Jonali Gogoi

WEEK	TOPICS TO BE COVERED	UNIT	TEACHER
		NUMBER	
	Variance Covariance of Least Square Estimators	III	Dr. Jonali Gogoi
	logistic non-linear growth models	IV	Dr. Vivek Verma
	Test for overall regression	V	Dr. Vivek Verma
	Estimation of error variance with auto-correlation	III	Dr. Jonali Gogoi
Thirtsouth	Multicollinearity	III	Dr. Jonali Gogoi
Thirteenth	logistic non-linear growth models	IV	Dr. Vivek Verma
	Multiple logistic regression	V	Dr. Vivek Verma
	Detection and Correction of Multicollinearity	III	Dr. Jonali Gogoi
	Problem of Correlated errors	III	Dr. Jonali Gogoi
Fourteenth	Fit of polynomial regression using logistic non-linear growth models	IV	Dr. Vivek Verma
	Multiple logistic regression-Forward method	V	Dr. Vivek Verma
Fifteenth	Ridge Regression	III	Dr. Jonali Gogoi
	Difference between linear regression and ridge regression	III	Dr. Jonali Gogoi
	Fit of polynomial regression using Gompertz non-linear growth models	IV	Dr. Vivek Verma
	Multiple logistic regression- Backward methods	V	Dr. Vivek Verma

Dr. Jonali Gogoi

Paper Number: STS 553 (CORE –PAPER) STOCHASTIC PROCESSES (Course is taught by Dr.Tanusree Deb Roy) Course Co-ordinator: TANUSREE DEB ROY

WEEK	TOPICS TO BE COVERED	UNIT	COMMENT
	Fundament concepts of Stochastic	I	
	Process	1	
	Markov Chains: Definitions, Examples,	Ι	
	transition probability matrix	т	Dr Tomura Dah Day
First	Classification of states of a Markov Chains	1	Dr. I anusree Deb Roy
	Higher transition probabilities in	Ι	-
	Markov Classification of states and	_	
	chain		
	Stability of a Markov System and	Ι	
	Limiting behaviour	т	_
Second	Absorption probabilities	<u> </u>	Dr Tanusree Deb Roy
Second	Markov Processes with discrete state	<u> </u>	
	space	п	
	Poisson process: Definitions and	II	
	Examples		
Third	Basic Properties of Poisson Processes	II	
	Generalization of the Poisson Process		Dr. Tanusree Deb Roy
	Simple Birth and Death Processes	<u> </u>	
	Process	п	
	Martingales: Definitions and	II	-
Fourth	Examples, Supermartingales		Dr.Tanusree Deb Roy
	Submartingales and Martingale	II	
	convergence theorems	TIT	_
	Concept of Random Walk	<u> </u>	
	Correlated random walk	 	_
E:61	Introduction on Brownian motion:	 	Dr.Tanusree Deb Roy
Fifth	Definition and Example.	ш	
	Wiener process	Ш	-
	Branching Process	TV/	
	Discrete time branching processes		_
Sixth	Generating Function Relations for	IV	Dr.Tanusree Deb Roy
	Branching Processes		
	Extinction probabilities their Examples	IV	
	Stationary Processes: Definitions and	IV	
Soventh	Examples Problems on Stationary Processes	IV	Dr Tanusree Deb Roy
Seventin	Ergodic Theory	IV IV	
	Problems on Ergodic Theory	IV	-
	Problems related to Branching	IV	
	Process		
Eighth	Renewal Processes: Definition and	V	
	Related Concept	T 7	Dr. Tanusree Deb Roy
	Examples of Renewal Processes Problems related to Renewal Processes		_
	Concept on Stopping time	V	
	Examples on Stopping time	V	-
Ninth	Problems on Stopping time	V	Dr.Tanusree Deb Roy
	Wald's Equation derivation	V	-
	Derivation of Renewal Equation	П	
	Decivation of Renewal Equation	N N	_
Tenth	Flementary Renewal Theorem	V	_
Tentin	Problems related to Elementary	V	– Dr.Tanusree Deb Roy
	Renewal Theorem	·	
	Derivation of The Renewal Theorem	V	
			4
Eleventh	Problems related to Renewal Theorem	V	4
	Problems on Delayed Renewal Process	V	Dr Tanusree Deb Rov
	Concept on Equilibrium Renewal	V	
Twelfth	Processes	÷	

WEEK	TOPICS TO BE COVERED	UNIT NUMBER	COMMENT
	Problems on Equilibrium Renewal	V	
	Process		Dr.Tanusree Deb Roy
	Discussion on any topic of Unit I	Ι	
	Discussion on any topic of Unit I	Ι	
	Discussion on any topic of Unit II	II	
Thirteenth	Discussion on any topic of Unit II	II	
Thirteentii	Discussion on any topic of Unit III	Ш	Dr.Tanusree Deb Roy
	Discussion on any topic of Unit III	Ш	
	Discussion on any topic of Unit IV	IV	
	Discussion on any topic of Unit IV	IV	
Fourteenth	Discussion on any topic of Unit V	V	Dr.Tanusree Deb Roy
	Discussion on any topic of Unit V	V	
Fifteenth	Revision		
	Revision		Dr.Tanusree Deb Roy
	Revision		7
	Revision		7

(TANUSREE DEB ROY)

Paper Number : STS 505

R Programming (ALIF)

Course Co-ordinator: Dibyojyoti Bhattacharjee

WEEK	TOPICS TO BE COVERED	UNIT NUMBER	TEACHER
	Reading and Writing CSV files, Installing	Ι	
First	packages in R		
	Constructing Frequency Distribution Table in	Ι	All the classes by
	R		Bhattachariee
Second	Graphical Representation of Frequency	Ι	Dhattacharjee
	Distribution	.	-
771 1	Scatter Plot, Box Plot, Violine Plot	I	-
Inird	Jittered plot, Jittered Plot superimposed over	I	
	Correlation Matrix and its Visualization	Π	-
Forth	Computation of Descriptive Statistics	Π	-
rorui	Lowess Fit	ш	
	Applications of Functions in R	П	-
Fifth	Advanced Graphics: Box Plot Violine	 	-
	Plot. Dot Plot		
	One Way and Two Way ANOVA in R	III	-
Sixth	Analysis of Covariance in R	III	
	-		
	Non-parametric Tests		
Seventh		III	
Eighth	Distribution Fitting	IV	
			4
N1nth	Distribution Fitting	IV	
Tenth	Simulation from Distributions	IV	-
	Linear and Non-linear Regression in two	V	
Eleventh	variables		
Lieventii	Multiple Regression in R	V	-
	Charling the Assumptions of Multiple	V	-
Twalfth	Regression	v	
1 wentui	Regression		
	Sensitivity Analysis of Multiple Regression	V	-
Thirteenth	2 chone (hy find your of the here free control	·	
	Working with Binary Logistic Regression	V	-
Fourteenth	Working with Dinary Logistic Regression	v	
	Assumption Verification of Logistic	V	-
	Regression		
Fifteenth	Sensitivity Analysis and Visualization		
	concerning Logistic Regression		

Note: The plan is tentative but any change in the plan shall be recorded in the comment column.

(Dibyojyoti Bhattacharjee) Course Coordinator

Paper Number: STS 556 (VBC)

Python Programming (Course is taught by Dr.Tanusree Deb Roy) Course Co-ordinator: TANUSREE DEB ROY

WEEK	TOPICS TO BE COVERED	UNIT NUMBER	COMMENT
	Introduction to Python Programming	Ι	
	Python Identifiers, Class names, Variable	Ι	
	names, Identifier naming rules		
	Implementation of Python, Modes of	Ι	
First	Programming in Python	T	Dr. Tanusree Deb Roy
	Applications, Eastures of Python	1	
	Programming		
	Comments for understanding Python code	II	
	Comment syntax, Python Single Line	II	
G 1	comment		Dr.Tanusree Deb Roy
Second	Mutiline comment in python, and writing	11	
	Variables in python Declaration of	Ш	-
	variables	m	
	Different types of variables in Python,	II	
	Assigning values to Variables		
Third	Initialization of variables	III	
	Reading and writing of variables	III	Dr. Tanusree Deb Roy
	Variable naming restrictions		
	characterization	111	
	Data Types in Python	IV	
Fourth	Python Numbers, Python Strings	IV	Dr.Tanusree Deb Roy
	Manually computing measures of central	IV	
	tendency in Python (Mean, Median, Mode,		
	etc.)	TV /	
	dispersion in Python (Variance St	1 V	
	Deviation, Quartile Deviation, etc.)		Dr.Tanusree Deb Rov
Fifth	Python set, Python Boolean data type	IV	
	Introduction to Python Arithmetic	V	
	Basic Mathematical Operations in Python	V	
	Basic mathematical operations for	V	
	variables		
Sixth	Relational Operators	V	Dr.Tanusree Deb Roy
	Increment and Logical Operators	V	-
	Decrement Operators, Branching Programs	V	
	Operators Precedence	v	
	Introduction and implementation of IDE	V	
Seventh	Installation of basic libraries: Numpy.	Based on all Units	-
	Pandas, etc.		
	Plots in Python: Bar, Histogram	Based on all Units	
	Plots in Python: Boxplot, Scatter, etc.	Based on all Units	
Eighth		D 1 11 11 1	
	Plots in Python (more than two variables	Based on all Units	-
	Simple programming using Python	Based on all Units	Dr.Tanusree Deb Roy
	Problems based on Descriptive Statistics	Based on all Units	-
	Problems based on Descriptive Statistics	Dased on all Units	
Ninth	cont	based on an Units	Dr.Tanusree Deb Roy
1 vintin	One sample t-test in Python	Based on all Units	
	Paired sample t-test in Python	Based on all Units	-
	Independent sample t-test using Python	Based on all Units	
	Non-parametric test using Python	Based on all Units	4
Tenth	Non-parametric test using Python (1)	Based on all Units	Dr.Tanusree Deb Roy
	Non-parametric test using Python (2)	Based on all Units	1
Florenth	z-test for proportion	Based on all Units	
Lieventh	Problem on ANOVA using Python	Based on all Units	
WEEK	TOPICS TO BE COVERED	UNIT NUMBER	COMMENT
	Problem on ANOVA using Python cont.	Based on all Units	
	Fitting of some important distributions	Based on all Units	Dr. Tanuaraa Dah Pau
1	using rymon Libraries		DI. TAHUSICE DEU KUY

	Fitting of some important distributions	Based on all Units	
	using Python Libraries cont.		
	Fitting of important distributions without	Based on all Units	
Twolfth	using Python Libraries		Dr. Tanusree Deb Roy
Iwellul	Fitting of important distributions without	Based on all Units	
	using Python Libraries (1)		
	Fitting of important distributions without	Based on all Units	
	using Python Libraries (2)		
	Fitting of important distributions without	Based on all Units	
	using Python Libraries (3)		
Thirteenth	Discussion on any topic of Unit I	Ι	Dr. Tanusree Deb Roy
	Discussion on any topic of Unit II	II	
	Discussion on any topic of Unit III	III	
	Discussion on any topic of Unit IV	IV	
Fourtoonth	Discussion on any topic of Unit V	V	
Fourteentn	Problem Discussion using Python	Based on all Units	Dr. Tanusree Deb Roy
	Problem Discussion using Python (1)	Based on all Units	
Fifteenth	Problem Discussion using Python (2)	Based on all Units	
	Revision		Dr. Tanusree Deb Roy
	Revision]
	Revision		

(TANUSREE DEB ROY)

Paper Number: STS 601

STATISTICAL INFERENCE-II

(This course is taught by Dr. Rama Shanker and Dr. Vivek Verma)

Course Co-ordinator: RAMA SHANKER

WEEK	TOPICS TO BE COVERED	UNIT NUMBER	COMMENT
	Brief Introduction of the course	Ι	Dr. Rama Shanker
	Theory of Likelihood Ratio test (LRT)	Ι	Dr. Rama Shanker
First	LRT for testing mean of normal population	Ι	Dr. Rama Shanker
	Concept of prior	IV	Dr. Vivek Verma
	LRT for testing variance of	Ι	Dr. Rama Shanker
	LRT for testing equality of means of two normal population	Ι	Dr. Rama Shanker
Second	LRT for testing equality of variances of two normal populations	Ι	Dr. Rama Shanker
	Concept of posterior distributions	IV	Dr. Vivek Verma
	LRT for testing the equality means of several normal populations	Ι	Dr. Rama Shanker
Third	LRT for testing equality of variances of several normal populations	Ι	Dr. Rama Shanker
Third	Consistency and unbiasedness of LRT	Ι	Dr. Rama Shanker
	Types of prior and relevant information	IV	Dr. Vivek Verma
	Similar regions and Similar tests,	Ι	Dr. Rama Shanker
	Asymptotic distribution of LRT	Ι	Dr. Rama Shanker
Forth	Monotone Likelihood Ratio test, Monotone Likelihood Ratio (MLR) with examples	Ι	Dr. Rama Shanker
	Types of prior and relevant	IV IV	Dr. Vivek Verma
Fifth	MLR in exponential family of	П	Dr. Rama Shanker
~			
	distributions		
	Uses of MLR in finding UMP test	II	Dr, Rama Shanker
	Brief Introduction of sequential	11	Dr. Rama Shanker
	Bayes' risk and Bayes rules	IV	Dr. Vivek Verma
	Dayes Tisk and Dayes fules	IV	
	Operating characteristics(OC) function and Average sample	П	Dr. Rama Shanker
Sixth	Determination of OC and ASN functions-problems	II	Dr. Rama Shanker
Sixui	Determination of OC and ASN functions-Problems	П	Dr. Rama Shanker
	Bayesian estimation of parameters	IV IV	Dr. Vivek Verma
	Economy of SPRT with examples	II	Dr. Rama Shanker
	Ultimate Termination of SPRT with probability one	Π	Dr. Rama Shanker
Seventh	Some standard examples for SPRT	II	Dr. Rama Shanker
	Parametric functions under various loss functions	IV IV	Dr. Vivek Verma
	Introduction with advantages and disadvantages of Non-parametric tests	III	Dr. Rama Shanker
Eighth	confidence interval and estimation in non-parametric test	III	Dr. Rama Shanker
	Sign test for one sample problems and theorem	III	Dr. Rama Shanker
	Parametric functions under various loss functions	IV IV	Dr. Vivek Verma

	Sign test for two samples problems	Ш	Dr. Rama Shanker
	with theorems and problems	III	DI. Rama Shanker
Ninth	with theorems and problems		
INIIIII	Bayagian interval astimation	V	Dr. Vivek Verma
	aradible intervale	V	DI. VIVER VEIIIId
	Wilessen sin and tests for and	v	
	wilcoxon-sign rank tests for one	ш	Da Domo Choalton
	Sample with theorems and examples	111	Dr. Rama Snanker
Tenth	theorems and examples		
	Li sheet nesterion density regions	V	Dr. Vissals Varma
	Highest posterior density regions	v	Dr. vivek verma
	and their applications	***	
	Run tests with theorem and	111	Dr. Rama Shanker
	examples		
	Run tests with theorem and	III	Dr. Rama Shanker
	examples		
Eleventh	Run tests with theorem and	III	Dr. Rama Shanker
	examples		D XX 1 XX
	Comparison with classical	V	Dr. Vivek Verma
	confidence intervals, Bayesian		
	prediction		
	Mann-Whitney U Test-Theory	III	Dr. Rama Shanker
	Mann-Whitney U Test-Theory-	III	Dr. Rama Shanker
	Problems		
Twolfth	Relationship between Mann-	III	Dr. Rama Shanker
I wellul	Whitney U test and Wilcoxon Test		
	Comparison with classical	V	Dr. Vivek Verma
	confidence intervals, Bayesian		
	prediction		
	Ch-square goodness of fit test	III	Dr. Rama Shanker
	Kolmogorov-Smirnov One sample	III	Dr. Rama Shanker
	test		
Thirteenth	Kolmogorov-Smirnov Two sample	III	Dr. Rama Shanker
	test		
	Bayesian testing of hypothesis	V	Dr. Vivek Verma
	problem		
	Revision of Likelihood ratio tests	Ι	Dr. Rama Shanker
	with problems		
Fourteenth	Revision of Likelihood ratio tests	Ι	Dr. Rama Shanker
	with problems		
	Revision of SPRT	II	Dr. Rama Shanker
	1		Γ
	Prior odds, Bayes factor for	V	Dr. Vivek Verma
	various types of hypothesis		
	problems.		
	Revision of SPRT	II	Dr. Rama Shanker
	Revision of Non-parametric test	III	Dr. Rama Shanker
E'C 1	_		
Fifteenth	Prior odds, Bayes factor for	V	Dr. Vivek Verma
	various types of hypothesis		
	problems.		
	P100101110.		

(RAMA SHANKER)

INDUSTRIAL STATISTICS AND OPTIMIZATION TECHNIQUES

(Course is taught by Dr. Rama Shanker, Dr. Jonali Gogoi and Dr. Tanusree Deb Roy)

WEEK	TOPICS TO BE COVERED	UNIT NUMBER	COMMENT
	Brief Introduction of course	Ι	Dr. Rama Shanker
	Convex sets and properties	Ι	Dr. Rama Shanker
	Inventory Theory: Introduction	III	Dr. Jonali Gogoi
First	Classification of Inventory	III	Dr. Jonali Gogoi
	Models	T 7	Du Tanana Dal Dari
	Introduction on Queuing Theory	<u> </u>	Dr. Tanusree Deb Koy
	Supporting and separating hyper	1	Dr. Kama Snanker
	planes		
	Linear Programming Problem	Ι	Dr. Rama Shanker
	(LPP)- Formulation and	-	
Casand	Graphical Solution		
Second	Deterministic Inventory Models	III	Dr. Jonali Gogoi
	(Model I)		
	Deterministic Inventory Models	III	Dr. Jonali Gogoi
	(Model II)	XX /	
	Structure of a queuing system		Dr. Tanusree Deb Roy
	Artificial warish tashri suce Dia	I	Dr. Rama Shanker
	M Method	1	Dr. Kama Shanker
	Deterministic Inventory Models	III	Dr. Ionali Gogoi
Third	(Model III)	111	Di. Johan Gogor
	Deterministic Inventory Models	III	Dr. Jonali Gogoi
	(Model IV)		6
	Classification of queuing models	IV	Dr. Tanusree Deb Roy
	Artificial variable technique:	Ι	Dr. Rama Shanker
	Two-Phase method		
	Artificial Free Simplex Method	I	Dr. Rama Shanker
	Deterministic Inventory Models	III	Dr. Jonali Gogoi
Forth	(Model V)	TIT	Du Land' Cara
	(Model VI)	111	Dr. Jonali Gogoi
	Description on Model 1:	IV	Dr. Tanusree Deb Roy
	$(M M 1):(\infty FCFS)$ or (Birth and	1.	D1. Tunusice Deb Roy
	Death Model)model		
	Duality-Theory and Problems	Ι	Dr. Rama Shanker
	Dual simplex Method	Ι	Dr, Rama Shanker
	Probabilistic Inventory Models	III	Dr. Jonali Gogoi
Fifth	(Model VII)		
1 mm	Probabilistic Inventory Models	III	Dr. Jonali Gogoi
	(Model VIII)	N 7	
	Characteristics and problem	IV	Dr. Tanusree Deb Roy
	Integer Programming Problem	T	Dr. Rama Shanker
	Gomory Cut Method	1	
	Integer Programming Problem-	Ι	Dr. Rama Shanker
	Branch and Bound Method		
Sixth	Probabilistic Inventory Models	III	Dr. Jonali Gogoi
SIXII	(Model IX)		
	Probabilistic Inventory Models	III	Dr. Jonali Gogoi
	(Model X)	Π/	Dr. Tonucroo Dob Doy
	$(M M 1) \cdot (N FCFS)$	IV	Dr. Tanusree Deb Roy
	Transportation Problems-Theory	П	Dr. Rama Shanker
	Transportation problems-Theory	II	Dr. Rama Shanker
	Examples on Deterministic	III	Dr. Jonali Gogoi
Sought	Inventory Models		
Seventin	Examples on Probabilistic	III	Dr. Jonali Gogoi
	Inventory Models		_
	Characteristics and problem	IV	Dr. Tanusree Deb Roy
	associated with Model 2	TT	
Ficht	INWCK, MIMIM and VAM for	Ш	Dr. Kama Shanker
Eighth	Transportation problem		
	Optimal Solution of	П	Dr. Rama Shanker
L			

Course Co-ordinator: RAMA SHANKER

WEEK	TOPICS TO BE COVERED	UNIT NUMBER	COMMENT
	Transportation Problem-MODI		
	method		
	Statistical Quality Control (SQC):	V	Dr. Jonali Gogoi
	Introduction		
	3-sigma control limits and	V	Dr. Jonali Gogoi
	probability limits		
	Description on Model 3:	IV	Dr. Tanusree Deb Roy
	$(M M C):(\infty FCFS)$		
	Special cases of Transportation	II	Dr. Rama Shanker
	Problems	П	
	Problems	11	Dr. Kama Shanker
	Process control and Product	V	Dr. Jonali Gogoi
Ninth	control	v	Di. Johan Gogor
	Control charts for Variables	V	Dr. Jonali Gogoi
	Characteristics and problem	IV	Dr. Tanusree Deb Roy
	associated with Model 3		
	Assignment problems-Theory	II	Dr. Rama Shanker
	Solution of Assignment problems	II	Dr. Rama Shanker
	using Hungarian Method		
Tenth	Control charts for Variables	V	Dr. Jonali Gogoi
	Control charts for Variables	V	Dr. Jonali Gogoi
	Description on Model 4:	IV	Dr. Tanusree Deb Roy
	(M M C):(N FCFS)		
	Solution of Assignment problems	II	Dr. Rama Shanker
	using Hungarian Method		
	Some special cases of Assignment	11	Dr. Rama Shanker
Eleventh	Control charts for Attributes	V	Dr. Jonali Gagoi
	Control charts for Attributes	V	Dr. Jonali Gogoi
	Problem associated with Model 4		Dr. Tanusree Deb Roy
	Some special cases of Assignment	П	Dr. Rama Shanker
	problems	п	DI. Rama Shanker
	Non-Linear Programming(NLP)	Π	Dr. Rama Shanker
	problem-Theory		
Twelfth	Natural tolerance limits and	V	Dr. Jonali Gogoi
	specification limits		
	Modified Control Charts	V	Dr. Jonali Gogoi
	Discussions on the Theory and	IV	Dr. Tanusree Deb Roy
	Problems in Queuing Theory	_	
	Kuhn Tucker conditions of NLP		Dr. Rama Shanker
	Problems on NLP	<u> </u>	Dr. Rama Shanker
	Sampling inspection plans by	V	Dr. Jonali Gogoi
Thirts and h	attributes (Single Sampling plan)	X 7	
Inrteenth	sampling inspection plans by attributes (Double sampling plan)	V	Dr. Jonali Gogoi
	Continuation of the Discussions	IV	Dr. Tanusree Deb Roy
	on the Theory and Problems in	1 V	DI. Tallusiee Deb Roy
	Oueuing Theory		
	Ouadratic Programming-Beal's	II	Dr. Rama Shanker
	method		
	Quadratic Programming- Wolf's	II	Dr. Rama Shanker
	method		
Fourteenth	Sampling inspection plans by	V	Dr. Jonali Gogoi
	attributes (Sequential sampling		
	plan)		
	Sampling inspection plans by	V	Dr. Jonali Gogoi
	Variables	Π.7	De Tonuces D-1 D
	Revisions of theory and Duchter	1V T	Dr. Lanusree Deb Koy
	Revisions of theory and Problems	<u>і</u> п	Dr. Rama Shanker
E:A a set 1	Revisions of theory and problems	<u>п</u> Ш	Dr. Jonali Gogoi
Filteenth	Revisions of theory and problems	V	Dr. Jonali Gogoi
	Revisions of Problems	· IV	Dr Tanusree Deb Roy
		T A	Dr. ranusice Deb Roy

Paper Number : STS 603 (ii) (ECC)

Biostatistics

Course Co-ordinator (STS 603): Dr. Vivek Verma

(The entire paper is assigned to Dr. Vivek Verma)

WEEK	TOPICS TO BE COVERED	UNIT NUMBER	COMMENT
	Introduction to Epidemiology, Principles of	Ι	
	Epidemiologic investigations	Ι	
First	Different epidemiologic measures (risk,	Ι	
1 1150	relative risk, odds, odds ratio, incidence,		
	Different epidemiologic measures (risk	I	
	relative risk, odds, odds ratio, incidence,	I	-
Second	prevalence)	I	-
Second	Design and analysis of cohort and case-	-	
	control studies.	T	
TI 1	Design and analysis of matched studies.		
Inira	Concept of causanty and its	I	-
	Introduction Ethical issues in clinical	П	
Forth	trials	II	-
Totti	Types of clinical trials	II	-
	Types of clinical trials,	П	
-	Randomized clinical trials:	II	
Fifth	Randomization for balancing treatment	II	
	assignments		
	Randomized clinical trials:	II	
Sixth	Randomization for balancing treatment	II	
	assignments	II	
	Random allocation rule, truncated	III	-
Seventh	binomial design, biased coin designs		-
	Incorporating covariate information.		
	kandom allocation rule, truncated		-
Eighth	Incorporating covariate information	III	
	incorporating covariate information.	III	
	Randomization to favor the better	III	
Ninth	performing treatments for binary	Ш	
INITUT	responses (play-the winner and		-
	randomized-play-the –winner rules).	111	
	Mendel's laws, Estimation of allele	IV	-
Tenth	frequencies,		-
	Handy Weighang law Mating tables		
Eleventh	Genetype frequencies with imbreeding		-
Eleventin	Genotype frequencies with inforceding,	IV	-
	Disequillibrum constant Imbreeding	IV	
Twelfth	coefficient	IV	-
1 Wollan		IV	
	Models of natural selection and	V	
Thirteenth	mutation,	V	
		V	
	Linkage analysis: Elston-Stewart	V	
Fourteenth	algorithm	V	1
		V]
	Linkage analysis: OTL manning	V	
Fifteenth	Emage anarysis. QTE mapping.	V	1
Theenun		V	1

Paper Number : STS 605 STATISTICAL COMPUTING IN SPSS (ALIF) Course Co-ordinator: Dibyojyoti Bhattacharjee (The entire paper is assigned to Dibyojyoti Bhattacharjee)

WEEK	TOPICS TO BE COVERED	UNIT	COMMENT
	Getting Started in SPSS	Ι	
	Arranging the variable view to input primary	Ι	
First	data, Data Entry	_	
	Data coding	I	
	Basic Graphical tools in SPSS	l	
C 1	Graphics in SPSS	l u	
Second	in SPSS	11	
	Descriptive Statistics involving two variables in SPSS	II	
Third	Regression-linear and non-linear in SPSS	Π	
	Multiple Regression in SPSS	Π	
	Multiple regression-checking the assumptions and dummy variables	II	
Forth	Basic Parametric Tests in SPSS	III	
	Z test for proportions, t-tests for means in SPSS	III	
	ANOVA -One Way, Two Way in SPSS	III	
E:64	Two-way ANOVA with multiple number of	III	
Fifth	observations per cell in SPSS		
	Latin Square Design Experiment in SPSS	III	
	Wilcoxon Signed Rank Test, Mann-Whitney U	III	
	Test, Wilcoxon Matched Pair Signed Rank		
	Test, Median test in SPSS		
Sixth	Run test (one sample, two samples), Wald-	III	
~~~~	Wolfowitz Run Test, Kolmogrov-Smirnov (one		
	sample and two sample tests) in SPSS	ш	
	Kruskal-Wallis One-way ANOVA, Binomial	111	
	Cochran's O Test Kendell's Coefficient of	ш	
	Concordance in SPSS	111	
Seventh	Collection and analysis of Likert Scale type data	IV	
<i>Seventin</i>	in SPSS	1,	
	Time Series Analysis - Theory	Prerequisite	
	Time Series Analysis – Theory	for Time	
Eighth		Series	
		Practical in	
		Unit IV	
	Sequence Charts, Forecasting Models in SPSS	IV	
Ninth	Fitting ARIMA $(p, d, q)$ models for forecasting in SPSS	IV	
	Choosing appropriate Time Series model in SPSS	IV	
	Fitting binary logistic regression model in	IV	
Tenth	Report Writing following analysis of binary	IV	
	logistic regression in SPSS	1,	
<b>T</b> 1 .1	Factor Analysis in SPSS	V	
Eleventh			
	Using Principal Component Analysis for	V	
Twelfth	composite index development		
Thirteenth	Multivariate Analysis of Variance (MANOVA)	V	
	IN SPSS		
	Cluster analysis- k-mean clustering and	V	
Fourteenth	hierarchical clustering in SPSS		
	Cluster analysis- hierarchical clustering in		
	SPSS	<b>X</b> 7	
Fifteenth	Discriminant Analysis in SPSS	v	

(Dibyojyoti Bhattacharjee)

## Paper Number :STS 651 STS 651 - Design and Analysis of Experiments (Core) (V) [Co-ordinator: Dr. Jonali Gogoi]

WEEK	TOPICS TO BE COVERED	UNIT	TEACHER
First	Review of linear estimation	Ι	
	Linear Models, Types of Analysis of Variance	Ι	Dr. Jonali Gogoi
	AOV, Examples, Assumptions	Ι	-
	Introduction to Block Designs	V	Dr. Vivek Verma
Second	Statistical Analysis of One-Way ANOVA	Ι	Dr. Jonali Gogoi
	Statistical Analysis of Two-Way ANOVA	Ι	
	Statistical Analysis of Two-Way Classified	I	-
	data with more than one observations per cell		
	Incomplete Block Designs	V	Dr. Vivek Verma
Third	Analysis of Covariance (ANOCOVA)	Ι	Dr. Jonali Gogoi
	Uses of ANOCOVA	Ι	
	Orthogonal Contrast	Π	
	Incomplete Block Designs	V	Dr. Vivek Verma
Fourth	Applications of ANOVA	П	Dr. Jonali Gogoi
Tourtin	ANOVA for Linearity of regression	<u>п</u>	
	ANOVA for Testing the Homogeneity of a	П	_
	group of regression Coefficients	п	
	Connectedness in Design	V	Dr. Vivek Verma
Fifth	Multiple Linear Regression model	v П	Dr. Jonali Gagai
riiui	Non parametric ANOVA	п п	DI. Johan Gogor
	Kruckel Wellie Test	п	_
	Kruskai-wains Test	11	
	Concepts and Connectedness	V	Dr. Vivek Verma
Sixth	Examples of Kruskal-Wallis Test	II	Dr. Jonali Gogoi
	Friedman's Two-Way Analysis of Variance by Ranks	II	
	Examples on Friedman's Test	II	
	Orthogonality in Block Designs	V	Dr. Vivek Verma
Seventh	Design of Experiment: Definition of some		Dr. Jonali Gogoi
Seventin	important Theorems related to Design of	111	DI. Johan Gogor
	Fxperiment		
	Basic principles of Design	Ш	_
	Statistical Analysis of Completely		
	Randomized Design (CRD)	111	
	Orthogonality in Plack Designs	V	Dr. Wissels Warma
<b>F</b> ' 1 (1	Orthogonality in Block Designs	V	Dr. vivek verma
Eighth	Applications, advantages and disadvantages of CRD	111	Dr. Jonali Gogoi
	Statistical Analysis of Randomized Block Design (RBD)	III	
	Applications, advantages and disadvantages of RBD	III	
	BalanceBlock Designs	V	Dr. Vivek Verma
Ninth	Latin Square Design (LSD) and its Analysis	III	Dr. Jonali Gogoi
	Advantages and disadvantages of LSD	III	
	Efficiency of a Design	III	
	Conceptualization of Balance Incomplete	V	Dr. Vivek Verma
	Block Design (BIBD)	TTT	
Tenth	Efficiency of RBD over CRD		Dr. Jonali Gogoi
	Efficiency of LSD over CRD		_
	Efficiency of LSD over RBD	III	
	BIBD Types and its utility	V	Dr. Vivek Verma
Eleventh	Missing Plot Technique, Estimation of Missing Observation in RBD	III	Dr. Jonali Gogoi
	Estimation of Missing Observation in LSD	III	
	Graeco-Latin Square Design	III	
	Analysis in BIBD	V	Dr. Vivek Verma
Twelfth	Quasi-Latin Square Design	III	Dr. Jonali Gogoi
i wonun	Factorial Experiments (FE), Advantages and	IV	

WEEK	TOPICS TO BE COVERED	UNIT	TEACHER
	Disadvantages of FE		
	Statistical Analysis of 2 ² F.E.	IV	
	Intrablock and Inter block information	V	Dr. Vivek Verma
Thirteenth	Statistical Analysis of 2 ³ F.E.	IV	Dr. Jonali Gogoi
	Statistical Analysis of 3 ² F.E.	IV	
	Statistical Analysis of 3 ³ F.E.	IV	
	Resolvable and affine resolvable designs	V	Dr. Vivek Verma
Fourteenth	Confounding	IV	Dr. Jonali Gogoi
	Types of Confounding	IV	
	Advantages and Disadvantages of	IV	
	Confounding		
	Split-plot Design	V	Dr. Vivek Verma
Fifteenth	Confounding in 2 ³ F.E.	IV	Dr. Jonali Gogoi
	Symmetrical F.E.	IV	]
	Symmetrical F.E.s (s ^m , where s is a prime or a	IV	
	prime power)		
	Strip-plot Design	V	Dr. Vivek Verma

#### Paper Number : STS 652

#### MULTIVARIATE ANALYSIS (Core)

#### Course Co-ordinator: Dibyojyoti Bhattacharjee

WEEK	TOPICS TO BE COVERED	UNIT NUMBER	TEACHER
First	Introduction to Multivariate Analysis Arrangement of Data and Variables	Ι	All the classes by
Second	Application of Multivariate AnalysisGraphical Representation of Multivariate Data	I I	Dibyojyoti Bhattacharjee
	Multivariate normal distribution its properties and characterization	Ι	
Third	Maximum likelihood estimators of parameters of Multivariate Normal Distribution	Ι	
Forth	Problems on Multivariate Normal Distribution	Ι	
Fifth	Multinomial distribution and its properties	Ι	
Sixth	Wishart matrix- distribution, characteristic function and properties Multivariate	Π	
Seventh	The Multivariate General Linear Model	П	
Eighth	Mahalanobis D ² - its applications and properties	Ш	
Ninth	Hotelling's T ² statistic and its applications	III	-
Tenth	Likelihood Ratio Test for mean vectors, Variance-Covariance matrix	III	
Eleventh	Discriminant Analysis	IV	
Twolfth	Canonical Correlation	IV	
	Factor Analysis	IV	
Thirteenth	Principal Component Analysis and MANOVA	V	
Fourteenth	Introduction to Machine Learning and Techniques for Classification	V	
Fifteenth	Lazy Learning and Probabilistic Learning techniques, Cluster Analysis	V	

Note: The plan is tentative but any change in the plan shall be recorded in the comment column.

(Dibyojyoti Bhattacharjee)

#### Paper Number: STS 653 (ii)

#### RELIABILITY AND SURVIVAL ANALYSIS (This course is taught by Dr. Rama Shanker and Dr. Vivek Verma) Course Co-ordinator: RAMA SHANKER

WEEK	TOPICS TO BE COVERED	UNIT	COMMENT
	Brief Introduction of the course	Ι	Dr. Rama Shanker
	Reliability and Its importance	Ι	Dr. Rama Shanker
	Description of Various terminologies used in	Ι	Dr. Rama Shanker
First	reliability		
	Censoring and types of censoring	IV	Dr. Vivek Verma
	Some practical examples on censoring	IV	Dr. Vivek Verma
	Numerical computation of reliability	I	Dr. Rama Shanker
	terminologies	-	
	Derivation of reliability related functions for	Ι	Dr. Rama Shanker
	exponential distribution		
	Derivation of reliability related functions for	Ι	Dr. Rama Shanker
Second	gamma distribution		
	-		
	Hazard and survival function	IV	Dr. Vivek Verma
	Numerical examples on hazard and survival	IV	Dr. Vivek Verma
	function		
	Derivation of reliability related functions for	Ι	Dr. Rama Shanker
	Weibull distribution		
	Derivation of reliability related functions for	Ι	Dr. Rama Shanker
Third	normal and log-normal distributions		
	Some practical examples on reliability	1	Dr. Rama Shanker
	Estimation of survival function	IV	Dr. Vivek Verma
	Nelson-Aalen method	IV	Dr. Vivek Verma
	Concepts of Aging-IFR and IFRA	II	Dr. Rama Shanker
	Numerical examples on Aging and	II	Dr. Rama Shanker
	computation		
Fourth	Classes of distributions and Their Dual	II	Dr. Rama Shanker
	Kaplan-Meier's method	IV	Dr. Vivek Verma
	Examples on Kaplan-Meier's method	IV	Dr. Vivek Verma
	Coherent system as Binary function	II	Dr. Rama Shanker
	Numerical examples on Coherent system as	II	Dr, Rama Shanker
Fifth	Binary function		
Thu	Minimal cut with examples	II	Dr. Rama Shanker
	Some examples on Kaplan-Meier's method	IV	Dr. Vivek Verma
	Some examples on Kaplan-Meier's method	IV	Dr. Vivek Verma
	Paths set with examples	II	Dr. Rama Shanker
	Computation of path set from numerical	II	Dr. Rama Shanker
	example		
Sixth	Some practical examples of minimal cut and	II	Dr. Rama Shanker
	paths set		
	Proportional risk with examples	V	Dr. Vivek Verma
	Practical examples on Proportional risk	V	Dr. Vivek Verma
	Series system of reliability	III	Dr. Rama Shanker
Seventh	Examples on series system of reliability	III	Dr. Rama Shanker

WEEK	TOPICS TO BE COVERED	UNIT	COMMENT
	Parallel system of reliability	III	Dr. Rama Shanker
	Cox regression with examples	V	Dr. Vivek Verma
	Parametric methods for analysis of survival	V	Dr. Vivek Verma
	data		
	Examples on Parallel system of reliability	111	Dr. Rama Shanker
		m	
	Series and parallel combinations		Dr. Rama Shanker
Eighth	Practical examples on Series and parallel	111	Dr. Rama Snanker
	Parametric methods for analysis of survival	V	Dr. Vivek Verma
	data	v	DI. VIVEK VEIIIIa
	Parametric methods for analysis of survival	V	Dr. Vivek Verma
	data		
	Complex system analysis	III	Dr. Rama Shanker
	Examples on complex system analysis	III	Dr. Rama Shanker
	K out of N system of configuration	III	Dr. Rama Shanker
Ninth	Non-parametric methods for analysis of	V	Dr. Vivek Verma
	survival data		
	Non-parametric methods for analysis of	V	Dr. Vivek Verma
	survival data	III	
	Derivation of reliability for K out of N system	111	Dr. Rama Snanker
	Numerical Computation of reliability for K	Ш	Dr. Rama Shanker
	out of N system of configuration	m	Di. Rama Shankei
	Numerical Computation of reliability for K	III	Dr. Rama Shanker
Tenth	out of N system of configuration		
	Non-parametric methods for analysis of	V	Dr. Vivek Verma
	survival data		
	Non-parametric methods for analysis of	V	Dr. Vivek Verma
	survival data		
	Derivation of G system of independent	111	Dr. Rama Shanker
	components	III	Du David Chaulan
	computation of G system of independent	111	Dr. Rama Snanker
Eleventh	Computation of G system of independent	Ш	Dr. Rama Shanker
	components	m	D1. Rama Shanker
	Competing risks and its computation	V	Dr. Vivek Verma
	Competing risks and its computation	V	Dr. Vivek Verma
	Practical applications of series and parallel	III	Dr. Rama Shanker
	system of reliability		
	Practical applications of series and parallel	III	Dr. Rama Shanker
	system of reliability		
Twelfth	Practical applications of series and parallel	III	Dr. Rama Shanker
	system of reliability	* 7	
	Crude, Net and partially crude probabilities	V	Dr. Vivek Verma
	Interrelationship Crude, Net and partially	V	Dr. Vivek Verma
Thirteenth	Practical applications of K out of N system of	ш	Dr. Rama Shanker
imteenui	i ractical applications of is out of it system of	111	

WEEK	TOPICS TO BE COVERED	UNIT	COMMENT
	reliability		
	Practical applications of K out of N system of reliability	Ш	Dr. Rama Shanker
	Practical applications of K out of N system of reliability	Ш	Dr. Rama Shanker
	Estimation of Crude, Net and partially crude probabilities	V	Dr. Vivek Verma
	Estimation of Crude, Net and partially crude probabilities	V	Dr. Vivek Verma
	Revision of Unit I	Ι	Dr. Rama Shanker
	Revision of Unit I	Ι	Dr. Rama Shanker
Fourteenth	Revision of Unit II	Π	Dr. Rama Shanker
	Revision of Unit IV	IV	Dr. Vivek Verma
	Revision of Unit IV	IV	Dr. Vivek Verma
	Revision Unit II	Π	Dr. Rama Shanker
	Revision of Unit III	III	Dr. Rama Shanker
Fifteenth	Revision of Unit III	III	Dr. Rama Shanker
	Revision of Unit V	V	Dr. Vivek Verma
	Revision of Unit V	V	Dr. Vivek Verma

#### (RAMA SHANKER)